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Abstract

The transonic flutter dip phenomena on thin
airfoils, which are employed for propfan blades,
fs investigated using an integrated Euler/
Navier-Stokes code and a two degrees of freedom
typical section structural model. As a part of
the code validation, the flutter characteristics
of the NACA 64A010 airfoll are also investigated.
In addition, the effects of artificial dissipation
models, rotational flow, initial conditions, mean
angle of attack, viscosity, airfoil thickness, and
shape on flutter are investigated.

The present results obtained with a Euler
code for the NACA 64A010 airfoll are in reasonable
agreement with published results obtained by using
transonic small disturbance and Euler codes. The
two artificial dissipation models, one based on the
local pressure gradient scaled by a common factor
and the other based on the local pressure gradient
scaled by a spectral radius, predicted the same
flutter speeds except in the recovery region for
the case studied.

The effects of rotational flow, initial condi-
tions, mean angle of attack, and viscosity for the
Reynold's number studied seem to be negligible or
small on the minima of the flutter dip. However,
they have significant effect on the flutter bound-
ary away from the dip.

The flutter dip shifts towards higher Mach
number as the thickness decreases for symmetrical
airfoils, other parameters being the same. This is
fn direct relation to the location and strength of
the shock. The flutter boundary for a thin cam-
bered airfoil (propfan airfoll) showed that the
effect of camber is nullified by the effect due to
reduction in thickness and showed a relatively low
transonic dip.

The flutter boundary of a simulated SRS prop-
fan typical section model showed a very low tran-
sonic flutter dip. However, further studies with
varying mean angles of attack and mass ratio are
required to better understand the transonic flutter
dip phenomena of highly swept propfans.

*NASA Resident Research Associate.
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NOMENCLATURE

distance of elastic axis from the
origin

speed of sound

semichord

damping coefficient in plunging
pressure coefficient

damping coefficient in pitching
chord

1ift coefficient

moment coefficient about elastic axis

total energy of the fluid per unit
volume

plunging (bending) displacement, posi-
tive downward

polar mass moment of inertia
Jacobian of transformation

plunging spring constant

pitching spring constant

Mach number

mass per unit length

generalized force in plunging
generalized force in pitching
Reynold's number based on chord
radius of gyration about elastic axis

radius of gyration about center of
gravity

static unbalance, mbx,



t time

t.c nondimensional time, t a_/c

u,v Cartesian velocities normalized by the
speed of sound

v resultant velocity

Vi flutter velocity

X distance measured from leading edge to

trailing edge, normalized by chord
X,y Cartesian coordinate system

distance between elastic axis and cen-

* ter of gravity

a pitching (torsion) displacement, posi-
tive nose up

ay angle of attack, deg

n normal direction of transformed coordfi-
nate system

m mass ratio

th critical damping coefficient in
plunging

Ca critical damping coefficient in
pitching

£ chordwise direction of transformed
coordinate system

P air density

wh uncoupled plunging frequency, J?h/m

Wy uncoupled pitching frequency, Jfa/Ia

Superscripts

) d¢ H/dt

() d¢ ) dt

n=1,n,n+l time levels

Introduction

The requirements of high aerodynamic effi-
ciency and low noise in the operating range of
transonic flow has resulted in thin (2 to 4 percent
thick), highly swept and twisted blades for prop-
fans. These blades operate at moderate to large
mean angles of attack. In wind tunnel tests of a
ten-bladed, highly swept SR5 propfan model,' con-
ducted at NASA Lewis Research Center, the blades
have fluttered at transonic tip Mach numbers at sea
level conditions. The aeroelastic characteristics
of this model were investigated in Refs. 1 to 3 by
using a two-dimensional Iinear subsonic unsteady
cascade aerodynamic theory with a correction for
blade sweep. The correlation between theory and
experiment varied from poor to good, depending on
the test parameters. To further understand the
physics of the flutter phenomena and to validate
the recently developed linear cascade aeroelastic
models for three-dimensional subsonic flow condi-

tions, correlative studies were continued in
Refs. 3 to 6 which showed good agreement between
theory and experiment. However, because of the
Timitations of the employed linear subsonic
unsteady cascade aerodynamic models, the investi-
gations in Refs. 1 to 6 were unable to throw any
light on the effect of nonlinear transonic flow
on flutter characteristics of swept, thin blades
in general, and of the SR5 propfan model in
particular.

The present investigation was initiated to
help address the nonlinear effects on the flutter
of a propfan in the transonic flow regime by using
a step-by-step approach. In the first step, the
investigation is restricted to an isolated airfoill
with two degrees of freedom. The isolated airfoil
section 1s selected as the section at 75 percent
span of a thin swept propfan blade. The unsteady
aerodynamic loads on the isolated airfoil are cal-
culated by using a two-dimensional Euler/Navier-
Stokes solver. This aerodynamic model is selected
since adequate three-dimensional, unsteady, cas-
cade, transonic aerodynamic models for rotating
propfan blades are not available. Even though the
propfan blades are in a cascade, which has a desta-
bilizing effect on flutter characteristics, the
cascade effects are neglected in this investiga-
tion; since the major goal of this paper is to
understand the physics behind the flutter dip phe-
nomena of thin, swept isolated airfoils. As a
byproduct of the code validation calculations, the
effects of blade shape, thickness, mean angle of
attack, initfal conditions, rotational fiow, and
viscosity on the transonic flutter characteristics
of a thick airfoil are also investigated.

The approach being used for the flutter analy-
sis is the simultaneous integration of structure-
fluid dynamics equations. The loads determined
from solving the fluid dynamic equations are used
as input to the structural dynamic equations. The
resultant deflections are then used as input to the
fluid dynamic equations to determine the loads
again. If the amplitude of the deflections grow in
time, then flutter is sald to have occurred. In
all methods of flutter analyses, the difference
lies mainly in the prediction of aerodynamic loads.

Early published research on the effects of
transonic flow on propfan blade, or propfan airfoil
flutter characteristics, is nonexistent. However,
considerable research’-24 is being conducted on
flutter characteristics of airfoils and ajrgraft
wings in transonic flow. Published resultsZ0-24
show that there is a considerable amount of reduc-
tion in flutter speed in the transonic flow regime
for highly swept blades when compared to the flut-
ter speed predicted by linear theories. This
reduction has been called transonic flutter dip.
This transonic flutter dip has been investigated
by us1n? tranionic small disturbance (TSD)
theory;10.20.21 modified strip analysis method;22
the Euler equations;<3 and the Navier-Stokes equa-
tions.2% Many of these methods, along with flutter
results, are reviewed in Ref. 25.

The small disturbance theory and full poten-
tial flow theories fail to take into account the
rotationality of the flow, which could be signifi-
cant for regions where curved shocks exist. Fur-
thermore, potential flow theory may give multiple
steady~state solutions at a given flight condition
if the free stream Mach number is sufficiently



high. Even though the flutter boundaries have
been predicted using these methods, the question
has always been asked, how strong are the effects
of rotational flow, shock location, and shock
strength on the prediction of flutter boundaries?
These effects can only be studied by using efther
the Euler equations or the Navier-Stokes equations.

Flutter calculations using Euler equations
were presented in Ref. 23. The study showed sig-
nificant differences in the flutter boundaries,
compared with those obtained using TSD theories,
when the steady shocks are strong and at or near
the trailing edge. Reference 16 presented steady
and unsteady pressure calculations using Euler
equations, and concluded that "the interaction of
shock with the boundary layer is strong enough to
alter the airfoll pressure distribution substan-
tially." The interaction of a shock and boundary
layer may lead to boundary layer separation result-
ing in a flow condition which is totally beyond the
capability of Euler equations. Also, the Euler
equations do not show the effect of viscosity on
the flutter boundary. This means that for most
accurate prediction of the aerodynamic loads and
the flutter boundary, solution of the Navier-Stokes
equations is needed. It should also be noted here
that the calculations done so far in the published
1iterature have been with 6 to 12 percent thick
airfoils. HWith the advent of propfans, consisting
of 2 to 4 percent thick airfolls, an investigation
is required for thinner airfoils.

In the present paper, the Euler/Navier-Stokes
flow solver, which is described in Ref. 26, and
coupled to a binary structural dynamic model in

Ref. 24, will be applied first to study the effects
of rotational flow, initial conditions, mean angle
of attack, viscosity, blade shape, and thickness

on the transonic flutter characteristics of a

swept NACA h4A010 airfoll with the structural
parameters given in Ref. 20. Next, the coupled
binary structural dynamic model flow solver will

be applied to a thin, swept SR5 propfan blade
section to study its transonic flutter characteris-
tics. It is to be mentioned here that the artifi-
cial dissipation mode! used in Ref. 24 was based on
the local pressure gradient scaled by a cgnstant
factor. Recently, efforts are being made
incorporate a second dissipation model in this
code. This model is based on the local pressure
gradient scaled by a spectral radius. Preliminary
results obtained using this model will also be pre-
sented for comparison.

Aeroelastic Model

A typical section model of a blade, as shown
in Fig. 1Ca), is used for the flutter study. The
typical section has two degrees of freedom, plung-
ing (h) and pitching (a), positive as shown. The
governing equations for this model are

mh + Sa + C h + Kph = Qp
QD)
Sh+I1a+Ca+Ka=Q
a [+ 4 a a
where m is the mass, S 1s static unbalance,
Ch.Cq are structural damping parameters, K, and

K are the plunging and pitching spring constants,

0h and O are the generalized forces, and ( )" is
d( )/dt. Defining h = h/2b,

Xq = S/mb, T2 = Io/

2 2

mo%, wd = K, /m, wz - K /1, Cp = 20,0.m, and

Coq = 2Lqwoly, where b 1is the semi-chord, I, fis
the mass moment of inertia about the elastic axis,
wh and w, are the uncoupled plunging and pitch-
ing frequencies, {n and g, are the critical
damping factors in bending and torsion, Eq. (1),
can be written as

- (xa o = 21+ Qh
h + 7a+ [ZChwh]h+ [mh]h=2—m—
(2
[i_}: [r P frwer ] [w ' ]2 0
o3 & . A & al - (o 23 a
h+ |54 a+ a + a =
2 2 ] 2 J 2 J 4mb2
The generalized forces, Qn and Q, are
related to the 1ift and moment coefficients,
obtained from the aerodynamic code as follows:
Q = - 3 evic2be,
(3)
1 02,0042
Qq =3 PV (2b)
where ¢, s the 1ift coefficlient, and cp fis the

moment coefficient about the axis of rotation
(elastic axis), V is the resultant velocity and »p
fs the air density. Defining, t = ta,/(2b), and
V*= V/(bwy,), where a. 1s the speed of sound and
substituting Eq. (3) into Eq. (2), the final aeroe-
lastic equations can be written as

: X {u 4(; Mw, ] ' [ 2Mw 2 2¢ Mz
ho+ |sHa + i h o+ —-—r—h b= - !
2 (V"ma) 4 wa) - T
- @
x1 . 1%, loedml . mr? 2 m
alr a aa m
3 h o+ 3 at [y ole *|§E a = —

where ()" = d¢ )/dt, M = V/ap, and p s
m/mp b2. For simplicity, the bar on h and t
will be dropped for the rest of the paper.

An implicit time marching technique is used to
solve Eq. (4) in time. Let n be the time level
where the solution is known and n+1 is the time
level where h and « are sought. Then the first
and second derivatives of h (with similar expres-
sfons for «) are written as

™! o . ™

(at)?

where At 1is the time step in the marching proce-
dure. Substitution of these finite difference
derivatives for h', h", «', «" into Eq. (4) leads
to a system of simultaneous equations for h and
a at each time step.

h. - (hn*] -
At

; h = (5

The 1ift and moment coefficients (cy, cm) in

Eq. (4), are calculated by integrating the pressure
distribution over the airfoil surface at each time
step. The pressure is obtained by soiving the
unsteady, two-dimensional, Reynolds- averaged,
pressible Euler or Navier-Stokes equations on a
body-fitted coordinate system in strong conserva-
tion form using an alternate direction implicit
(ADI) procedure. The formulation has been

com-




described in Ref. 26, and only a brief outline is
given here. All the calculations are performed in
a body-fitted coordinate system (§, n, t) which is
mapped to the Cartesian coordinates (x, y, t),
Fig. 1(b), according to the following one-to-one
relationship:

£ = E(x,y,t)
n = n(x,y,t) (6)
T = t

The Jacobian of the transformation J is
given by

1

= —————— o))
X (XEyn - xnyE)

J = Exny - Eyn

and the metrics of the transformation are given by
the relationship:
B = Y, 5 &y m oI ing = sdye iy e e B
Once a grid has been constructed the metrics
of the transformation can be evaluated numerically.
Standard central differences were used to compute
the quantities such as x,, y,, etc., and these
quantities in turn were used 1n Eqs. (7) and (8) to
compute £y, E , etc. At the boundartes, three-

point one- sided differences were used to compute
the metrics.

In the (£, n, ) coordinate system, the two-
dimensional unsteady Navier-Stokes equations may be
written as

G =R +5 (9)
where

q = J-](p, pu, pv, €) (10)
and p s the fluid density; u and v are the
Cartesian components of fluid velocity; e 1is the
total energy_of the fluid per unit volume. The
quantities F, G, R, and S are given by

(ExF + EyG + th)

Fa 3
- (an + nyG + ntq)
J
an
. ({XR ; £.S)
s . (an 3 n:S)

The terms F and R are the flux and vis-
cous stress terms along the x-direction and G
and S are likewise the flux and viscous terms
along the y-direction and are given as follows:

F = (pu, pul + p, puv, ule + p))
G = (pv, puv, pv2 + p, vie + p))

12)
R = (0, TYXX» ‘txy. Ra)

S = (O. Txy, ‘Eyy. 54)

The quantities Rq and Sgq represent the dissipa-
tion of energy due to work done by the fluid in the
x- and y-directions respectively The viscous
stresses  tyx, Txy, and are related to the
velocity gradients through gtokes hypothesis.

Since the governing equations, Eq. (9), are
coupled and highly nonlinear, a stable and effi-
cient solution procedure is required. In
present work, the Beam-Warming algorithm,28 as
implemented by Steger,29 was followed with modifi-
cations noted by Sankar and Tang.26 The viscous
terms are evaluated explicitly to reduce the number
of operations needed to solve the governing equa-
tions. A brief description of the solution scheme
is given here.

The governing equations are written at a com-
putational node (1,3) in the following finite dif-
ference form:

~n+)

aq
| =n+1 ansl . an n o
it ot SEF + snG = 5€R + 5nS °ED

"oaw

where

Aq?;l . an+l _ an

The operators &¢ and &, are standard cen-
tral difference operators. For example, the term
S¢F 1? is the standard two point central difference
formula given by (F1+1,% - Fi ?)/2. Dij s an
artificial dissipation term and Ys discussed in the
next section.

The highly nonlinear terms F and G at the
time level (n+1) were expanded by a Taylor series
about a previous time level n as

~ " £\N
Fn+] - " R (g;) Aqn+l
aq

~ n A\
gh+l | gn, (Qg) Aq"*l
3q

where a?/aq and aG/aq are 4 by 4 matrices which
are the Jacobians_of the flux terms and G
with respect to q

Q4

In order to allow large values of the explicit
dissipation coefficient e. to be used without
instability, and to aliow the viscous terms to be
treated explicitly, the following implicit dissipa-
tion terms were added to the left side of the dif-
ference Eq. (13).

-1 ~n+l
- 15)
cIJ (8EE + Snn)J aq (15

The coefficient e, was taken to be two to

three times the explicit dissipation coefficient
eg- A range of e. values between 2 and 5 were

used in the calculations.

The dissipative term, Dj4, 1s added to remove
high-frequency errors in the Solution at every time
step, and to avoid odd-even decoupling of the
numerical solutions. Two models of introducing
artificial dissipation are available in the present
code. In model I,26 the dissipation term is writ-
ten, in conservative form, as a combination of sec-
ond and fourth order dissipative terms. This model



{s based on the local pressure gradient scaled by
a constant factor. A sensor based on the second
dertvative of pressure, turns the second order dis-
sipation term in the vicinity of shocks and sup-
presses the fourth order dissipation terms. This
sensing is followed only in the streamwise direc-
tion. A more detailed description of this model,
and bench mark calculations are presented in

Ref. 26. This model, as pointed out in Ref. 30,
adds positive dissipation in certain regions and
negative dissipation in other regions depending
on the flow field gradients in that region, which
may degrade the solution accuracy in some flow
problems.

In mode! II,27 the local pressure gradient is
scaled with the spectral radius of the flux vector.
The fourth order difference term is modified in a
way that it produces positive dissipative terms.
This model is similar to the one presented in
Refs. 31 and 32 and is be1ng currently implemented
In the present code by Wu.2’ Some preliminary test
results will be given in the present paper.

Equation (13) may be written after the addi-
tion of the artifictal implicit dissipation terms
given by Eq. (15), in the following operator form

af 3G -1 .
I+t 68, = +0t 6 = -¢e;d (8§, +8 )J
£ 23 " a3 I 113 nn
g™ . R" ae
where

R" = -at(5.F + 5na>" + B

R+ 55" - at e 0"
3 n

13 E

an

The teft hand side operator of Eq. (16) was
approximately factored into two small operators,
leading to the following final form:

)

3
[I + At 5{ ;

|

-1
- € atd GEEJ]

£)

x[l . At § s, atd s ] ag™! R (8
n I nn

@
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Equation 18 may be solved through the inver-
sion of two block triglagonal matrix equations, one
corresponding to the §g-direction, and the other
corresponding to the n-direction. In order to
keep the flow solver simple, the boundary condi-
tions on all the boundaries were explicitly updated
after the interior points had been updated using
Eq. (18).

The Baldwin-Lomax33 eddy viscosity model is
used to mode! the turbulent momentum and energy
transfer. This is a two layer algebraic turbulence
mode! with two algebraic equations in each layer.

Algebraic grid generation routines were
included by Sankar and Tang<® to make the code more
portable. Both O- and C-grids can be generated.
However, any grid can be overwritten for the algg-
braic grid, for example, by a numerical grid.34,35

The boundary conditions were treated expli-
citly as follows: at the solid surface, the no

siip boundary conditions were enforced by setting
the velocity of the fluid to that of the solid sur-
face at every time step. At the solid surface, the
normal derivative of the temperature and pressure
were also set to zero. The use of the C-grid sys-
tem introduces a cut between the airfoil trailing
edge and the downstream boundary. Along this cut,
the flow properties were averaged from above and
below. The body-fitted grids employed in this work
were such that the far field boundaries were at
least six chord lengths away. The flow properties
at the far field boundaries were assumed to be
undisturbed.

The Navier-Stokes solver described here may
also be used to model inviscid rotational flows.
This requires that the viscous terms in the Navier-
Stokes equations be suppressed, and that the zero
tangential velocity boundary condition at the solid
surface be replaced by a nonzero value, obtained by
extrapolating the tangential component of the fluid
velocity from the interior.

The code is expected to predict the flow field
for arbitrary airfolls for moderate angles of
attack, a Mach number range from 0.1 _to 1.2, and a
Reynolds number range from 100 to 107, This code
has been used to predict the dynamic_stall charac-
teristics for the NACA 0012 airfoil,26 transonic
flow solutions,30 and stall flutter characteristics
for the NACA 0012 airfoil.24

Results and Discussion

This section presents the numerical results
obtained with the aeroelastic model described ear-
ljer. First, the code is validated with published
results. Next, the effects of rotational flow,
initfal conditions, mean angle of attack, and
shape and thickness on transonic flutter are inves-
tigated. Then transonic flutter calculations are
done for the SRS propfan blade typical section
model .

Code Validation

References 24, 26, and 36 presented selected
validation cases with the present Euler/Navier-
Stokes flow solver. These cases represented dif-
ferent airfoils at different flow conditions. In
those references, the dissipation model I, which
was described earlier was used. As a part of the
validation study of the dissipation model II,
described earlier, the pressure distribution for
RAE2822 airfoll is recalculated. The results are
compared with those obtained in Ref. 36 with dissi-
pation model I and the experimental data presented
therein. Figure 2 shows the steady pressure dis-
tribution (pressure coeffictent, -Cp, versus non-
dimensional distance along the chord,

X = 0.5*(x/b + 1), see the coordinate system in
Fig. 1(a)) for the RAE 2822 airfoil at Mach

number, M = 0.73, angle of attack, a3 = 2.79°; and
Reynold's number, Re = 6.5 million. The numerical
results with both dissipation models and the exper-
fmental data show very good comparison. These com-
parisons help to give confidence in the code and in
the attempt at flutter calculations with the dissi-
pation model II.

In order to establish the capability of the
code for predicting the transonic flutter dip, the
flutter boundary of the NACA 64A010 aifrfoil is
obtained. The calculations are carried out using



the Euler version of the code with both dissipation
models. A 157 by 40 algebraic C-grid shown in

Fig. 3 is used in the calculations. The structural
parameters are those used in Ref. 20 and are given
as case A in Table 1. 1In Ref. 20, the wing geomet-
ric sweep ts modeled by positioning the elastic
axis ahead of the leading edge (an = -2.0, see

Fig. 1¢a)).

To obtain the flutter boundary, a steady-state
flow field solution is first obtained for 0° mean
angle of attack. The solution of the aercelastic
equations (Eq. (4)) s then started at an assumed
nondimensional flutter speed, V*(=V/(bw,), by pre-
scribing the inftial conditions, h(0), a(0), h (0),
and a« (0). If the amplitude of oscillation of the
resulting transfent solution increases (decreases),
the value of V* s reduced (increased) and the
transient solution is again calculated. The criti-
cal flutter speed (V*f) is obtained by linearly
interpolating the logarithmic decrement of the
amplitude of oscillations for two different but
close values of V* (one giving oscillations with
increasing amplitude and the other giving oscilla-
tions with decreasing amplitude). The flutter
boundary fs presented as a variation of the flut-
ter speed index (V*p/ vin) versus Mach number (M).

The results obtained for the NACA 64A010 air-
foil are compared with published resuits!0,11,21,23
in Fig. 4. Refs. 10, 11, and 21 used transonic
small disturbance (TSD) theory and Ref. 23 used
Euler equations in the calculations. 1In this com-
parison, differences due to grids, numerical
schemes, artifictal viscostty, etc., employed in
the pubtished results are not considered but only
the flutter boundaries are compared. In the
present calculations, the initial conditions,
al0) = 0.1°, with zero h(0), h (0), and a (0)
are ufsd. The gomparison shows that all of the
codes!0,11,21,23 gqualitatively predict the tran-
sonic dip.

For Mach numbers between 0.7 and 0.82, the
flutter speeds predicted by the present Euler code
are less than the corresponding values from
Refs. 10, 11, 21, and 23. For Mach numbers between
0.82 and 0.87 the flutter speeds predicted by all
the codes are in good agreement. These differences
can be explained partly by inspection of the pres-
sure distribution over the airfoll. For a Mach
number of 0.8, the pressure distribution (Cp),
showed a shock appearing near the mid chord.
shock travels towards the trailing edge and
increases in strength as the Mach number increases.
The TSD theories are not able to model the effect
of rotational flow downstream of the shock which
could be significant in some cases. Since the
shock is almost near the mid chord, the flow is
rotational over a reasonably large surface. This
effect on a considerably large surface is totally
neglected by the TSD codes which could result in a
higher flutter boundary. Thus the difference
between the flutter speeds calculated by using the
Euler code and TSD codes in this region may be
attributed to rotational flow and entropy effects
behind shock. However for Mach numbers between
0.85 and 0.88, the shock is almost near the trail-
tng edge reducing the surface over which the flow
is rotational. Then the calculations with Euler
code shows same accuracy as of TSD codes. This
could explain the very good comparison by all the
codes between M = 0.85 and 0.88.

This

However, the transonic recovery portion of the
flutter boundary predicted by the Euler codes diff-
ers from those predicted by codes based on TSD
theory. The recovery predicted by Euler codes
occurs at a higher Mach number compared to the one
predicted by TSD codes. Also, the Euler code of
Ref. 23 predicts the recovery to be at a higher
Mach number compared to the present Euler code.
Beyond M = 0.88, the shock strength is suffici-
ently high enough to induce separation. The Euler
and TSD codes fail to model separated flow behind
shocks and predict qualitatively the same flutter
boundary beyond M = 0.88.

Also, there are significant qualitative ¢iff-
erences in the recovery region of the flutter
boundary obtained by the two dissipation models
available in the present Euler code. The dissipa-
tion mode! I predicts a flutter boundary which
folds over to provide upper boundaries. For a Mach
number of 0.9, three boundaries are observed. This
compares qualitatively with the boundaries obtained
in Refs 10, 11, and 23. MWhereas no such folding
over of the boundary is observed when dissipation
model II §s used. Between Mach numbers of 0.88 and
0.9 the flutter boundary jumps considerably, and is
almost the same as the third boundary obtained with
dissipation model I. This has also been observed
by Isogai.2! Again, this difference can be
explained by observing the pressure distribution
obtained with the two dissipation models. The
pressure distributions obtained at M = 0.9 with
the two dissipation models are shown in Fig. 5.
Both models show considerable differences with
regard to the shock location and shock strength.
The dissipation model II predicts the shock to be
closer to the trailing edge than that predicted by
dissipation model I. This may be the reason for
the difference observed in the recovery region with
these models.

Figure 6 shows a typical transient response
solution. Figure 6(a) shows the transient response
for a point below the flutter speed and Fig. 6(b)
shows the response for a point above the flutter
speed. In both the responses, the amplitude of h
is larger than that of a«, indicating possible
bending mode instability.

The above comparisons for the NACA 64A010 help
to give confidence in the code for investigation of
the flutter dip phenomena for other airfoils. It
also shows the importance of the accurate predic-
tion of the shock strength and position.

The code is now applied to study the effects
of the following: (1) initial conditions,
(2) mean angle of attack, (3).viscosity, and
(4) thickness and shape. Dissipation model I is
used in all the calculations.

Effect of initial conditions. To study the
effect of initial conditions, the initial condition
on af0) is increased from 0.1° to 4°, The flutter
boundary for 4°, together with that for 0.1°, is
shown in Fig. 7. For a Mach number of 0.8 the
flutter speed for 4° decreases by approximately
30 percent. This has also been observed in
Ref. 23. However, for Mach numbers of 0.85 and
0.88 there does not seem to be any significant
change in flutter speeds (less than 10 percent).
This again seems to be due to the position of the
shock. Since the shock is near the trailing edge
of the airfoil, the effect of rotation does not




seem to be of much significance. The results show
that the initial conditions coupled with transonic
flow nonlinearities have significant effects on the
flutter characteristics in the transonic Mach
number range, but negligible effect on the minima
of the transonic dip.

Effect of mean angle of attack. The effect of
mean angle of attack was studied by starting the
solution of the aeroelastic equations (Egq. (4)) at
different steady flow field conditions. In the
present study, the steady flow field is calculated
at two degrees of angle of attack, instead of 0°,
for Mach numbers 0.75, 0.8, 0.85, and 0.88. The
tnitial condition, a(0), is again 0.1°. These
results are also included in Fig. 7. The transonic
dip moves to teft since the shock occurs at lower
Mach numbers. For Mach number equal to 0.8, the
reduction in flutter speed index is almost 50 per-
cent. This was also observed by Edwards, et al.10
However, the shifting of the flutter boundary does
not seem to be as much as observed in Ref. 10.
Again, the effect of the mean angle is negligible
at the minima of the dip.

Effect of viscosity. The flutter boundary cal-
culations to study the effect of viscosity are very
expensive., The required computational time 1is
almost an order of magnitude higher than that for
the Euler case. Hence the effect was studied only
for a Reynold's number of 12 million. These
results are also shown in Fig. 7. For this case
again the flutter boundary near the dip shifts
down by less than 5 percent. This shift could be
attributed to change in grid spacing near the air-
foil since a very fine grid is required near the
alrfotl for the viscous case. The only significant
difference was that even with the dissipation
model I, there was no upper boundary observed.

The effect of viscosity seems negligible for the
Reynold's number studied here. However, studies at
a lower Reynold's number are in progress.

Effect of shape and thickness. The effect of
shape and thickness on the flutter boundary is
studied next. Four NACA 16-serfes airfoils with
the same structural dynamic parameters as those
used for the NACA 64A010 airfoll are considered for
the study (see Table 1, case A). This series of
airfolls is selected because these airfoills are
used on current propfan designs. For example, the
SRS propfan has 16-series airfoil sections on the
outer 45 percent of the span. The airfoll sections
vary in thickness and camber. The section selected
for the present analysis is 2.6 percent thick and
has a design 1ift coefficient of 0.13. Therefore,
for the study of shape and thickness, the airfolls
selected are 16-010, 16-004, 16-(1.3)(04), and
16-(1.3)(2.6). Here the first two digits specify
the series, the next digit indicates the amount of
camber expressed in terms of the design 1ift coef-
ficient in tenths, and the last two digits specify
the thickness to chord ratio in percent chord. The
first three airfoils are included for a step-by-
step verification of the code and to applications
for thin airfoils. Again, an algebraic C-grid of
157 by 40 is used.

The flutter boundaries for the selected air-
foils are compared in Fig. 8. Comparison of the
results for the NACA 16-010 and the NACA 16-004
airfoils show that the transonic dip shifts to the
right for the tatter airfoll. This is due to a
decrease in thickness which delays the formation

of the shock to higher Mach numbers. Because of
smaller thickness, the shock strength is also small
relative to that of NACA 16-010. This results in
a smaller jump in the flutter boundary in the
recovery region. For the same Mach number, the
NACA 16-004 airfoil has a shock appearing behind
that of the NACA 16-010 airfoil which results in a
smaller region of rotational flow for the NACA
16-004 airfoil. The combined effect of the shock
location and shock strength, and rotational flow
is to lower the boundary for the NACA 16-010 as
compared to that of the NACA 16-004 for the same
Mach number. The flutter boundaries calculated up
to M = 0.9 for the NACA 64A010 and the NACA
16-010 airfoils did not show any difference, indi-
cating thickness has more effect on the flutter
boundary than the shape.

The flutter boundary obtained for the NACA
16-¢1.3)¢04) 1s also shown in Fig. 8. The pressure
distribution curves, not shown here, for this air-
foil showed a shock at a Mach number equal to 0.85,
which resulted in a drop in the flutter speed index
compared to that for the NACA 16-004 airfoil. The
shock is at the trailing edge beyond M = 0.88, and
the flutter speed index starts increasing again.
The similarity of the flutter boundary curve with
that of the NACA 16-004 airfoil {s consistent with
the observation that the camber effect is equiva-
lent to the effect of initial angle of attack for
the NACA 16-¢1.3)(04) airfoil.

In Fig. 8, the flutter boundary obtained for
the NACA 16-(1.3)(2.6) airfoil (the propfan air-
foil) is also shown. A dip in the flutter boundary
can be seen near M = 0.925. There after the flut-
ter speed index starts increasing. It is interest-
ing to note that the flutter boundary between Mach
numbers 0.85 and 0.95 is almost similar to that
obtained for the NACA 16-004 airfoil. This is due
to the fact that the reduction in the flutter speed
index due to camber, like that for the NACA
16-(1.3)(04) airfoil, is compensated by a decrease
in thickness. Between Mach numbers 0.75 and 0.85,
the flutter boundaries for the NACA 16-004 and the
NACA 16-(1.3)(2.6) airfoils show the effect due to
thickness, as was observed for the NACA 16-010 and
the NACA 16-004 airfoils. A typical response for
the NACA 16-004 is shown in Fig. 9. Figure 9(a)
shows the transient response for a point below the
flutter speed, and Fig. 9(b) shows the response for
a point above the flutter speed. In both responses,
the amplitude of h s larger than that of a,
tndicating possible bending mode instability.

The comparison of the results from the four
airfoils shows that (1) for symmetric airfolls, the
transonic dip moves towards higher Mach numbers as
thickness to chord ratio decreases, (2) for the
thin cambered airfoil studied here, the camber
effects are nullified by the effects due to reduc-
tion in thickness, and the flutter boundary is
similar to a thick symmetric airfoil of the same
series, and (3) the flutter characteristics
strongly depend on the shock location and shock
strength.

After establishing confidence in the code, it
was applied to investigate the flutter characteris-
tics of a simulated SR5 propfan blade.



Flutter Characteristics of a
Simutated SRS Propfan Blade

A typical section model is constructed which
simulates the structural properties, mode shapes,
and coupled frequencies of the SR; propfan. Linear
subsonic isolated airfoil theory3’ is used in simu-
lating the typical section model. The rotation
axis (elastic axis) and the uncoupled bending and
torsional frequencies are chosen such that the mode
shapes and coupled frequencies are close to those
calculated for a SR5 propfan blade using NASTRAN
analysis. The selected properties are shown in
Table 1, case B. It should be noted here that
the frequency ratio is almost equal to one as in
case A, studied earlier, and the mass ratlio is
approximately twice that of case A. For the struc-
tural properties selected, the calculated flutter
Mach number and flutter reduced frequency are 0.875
and 0.17. The corresponding experimentall values
are 0.88 and 0.17 respectively.

The flutter boundary obtained using the
present Euler code with dissipation model I is
shown tn Fig. 10. The flutter boundary obtained
with linear isolated blade theory is also shown in
Fig. 10 along with the velocity index curve
(V/(bwy u) versus M) for this typical blade.

The present Euler code gives a flutter Mach number
of 0.845. This value is about 4.5 percent less
than that obtained from SRS propfan experiment.

The prediction of lower flutter Mach number by the
present Euler code may be due to the following rea-
sons: (1) the limitation of the typical structural
dynamic model employed to simulate the SRS propfan
and (2> no structural damping is included in the
present analysis.

Figure 10 shows that the flutter speed index
drops as the Mach number increases up to M = 0.9,
thereafter, it starts recovering, showing a very
Tow transonic flutter dip for SRS propfan blade.
The Euler code predicts almost the same flutter
boundary as the linear isolated blade theory. How-
ever, a much more pronounced transonic dip is
expected when the following aspects are considered.
The above calculations are made at zero mean angle
of attack. In a real situation, the propfan is at
a mean angle of attack which may cause transonic
flutter dip. The mass ratio used is 115, which is
higher than for the present composite propfans hav-
ing the mass ratio of the order of 33 to 60. This
Tow mass ratio may cause transonic flutter dip
which needs further investigation. The cascade
effects which are found to have destabilizing
effect on flutter in subsonic flow, may also effect
the transonic¢ dip.

The following points support the above points
when the flutter boundary obtained for the NACA
16-¢1.3)(2.6) afrfoll in Figs. 8 and 10 are com-
pared. In Fig. 8, a relatively large dip is seen
for the same airfoil section. Here the mass ratio
is 60, which is about 48 percent less than that
used for SRS propfan blade typical section in
Fig. 10. Also, the elastic axis position is one
semichord length in front of the leading edge com-
pared to that used for SRS propfan blade typical
section. Since here only an attempt is made to
simulate a SRS propfan, these structural properties
need to be improved for correct prediction of flut-
ter boundary and correlation with experiment in
transonic flow for thin highly swept propfans.

Conclusions

An Euler/Navier-Stokes flow solver is used to
obtain the flutter boundaries for a typical section
structural model with several airfoil sections.

The application of the code for predicting tran-
sonic flutter characteristics of thick and thin
airfoils is demonstrated. Based on this study, the
following conclusions are drawn.

1. The rotational flow effects behind the
shock have a strong effect on the transonic flutter
speed depending on the chordwise location of the
shock. The neglect of rotational flow effects
results in predicting a higher flutter speed.

2. The two dissipation models employed, one
based on the local pressure gradient scaled by a
constant factor and the other based on the local
pressure gradient scaled by spectral radius, pre-
dicted the same flutter boundary up to the tran-
sonic dip for a thick alrfoll. However, in the
recovery region, the boundaries predicted by these
models are different.

3. The effects of initial conditions, mean
angle of attack, and viscosity for the Reynold's
number studied on the minima of the transonic dip
seems negligible. However, they have a signifi-
cant effect away from the dip.

4. The blade thickness and shape dictate the
location and strength of the shock, there by
affecting the flutter boundary. The transonic dip
shifts to higher Mach numbers for symmetric air-
foils with decreasing airfoil thickness to chord
ratio. The flutter boundary, for relatively thin
cambered airfoils studied here, showed a relatively
low transonic dip compared to a symmetric thick
airfoil.

5. The predicted flutter Mach number for a
simulated SRS propfan blade is about 4.5 percent
less than that obtained by experiment. This dif-
ference is attributed to the simplified aeroelastic
model used in the present analysis. The flutter
boundary showed a very low transonic dip. Further
studies are needed to investigate the effects of
mean angle of attack, mass ratio, and elastic axis
position on the transonic flutter of highly swept
composite propfans.
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Table 1. - STRUCTURAL PARAMETERS

USED IN THE STUDY

[Distances are nondimensionalized
with respect to semi-chord (b),
see Fig. 1(a) for definitions.]

Parameter | Case A Case B
ap -2 ~1
wh/uwgy 1 0.928
Xg 1.8 0.9644
reg 0.4898 0.4769
n 60 115
Ch.la 0 0
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nullified by the effect due to reduction in thickness and showed a relatively low transonic dip.
The flutter boundary of a simulated SRS propfan typical section model showed a very low transonic
flutter dip. However, further studies with varying mean angles of attack and mass ratio are
required to better understand the transonic flutter dip phenomena of highly swept propfans.
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